体测跑800米是噩梦?学会这招轻松跑完******
最近,不少大学进行了体测,很多跑完800米、1000米的大学生们都会咳个不停。其实,跑完咳个不停,和不当的呼吸方式有关。
1 跑完步我们为什么会咳嗽?
当我们跑步速度不快时,用鼻子呼吸就可以满足身体对氧气的需求,而且鼻子呼吸,可以帮助过滤空气中灰尘等颗粒物,气温低时可起到加热空气作用,减少冷空气对气管、肺部的刺激。
但是当我们进入加速阶段时,仅靠两个鼻孔无法满足对氧气的需求,这时就需要用嘴巴呼吸,但是由于秋冬天气寒冷,气候干燥,寒冷干燥的空气直接进入口腔,会刺激我们的口腔、咽喉和气管黏膜,大脑会判断呼吸道有异物入侵,于是我们就会咳嗽以排除异物,所以跑完咳嗽是我们身体的正常反应。
机智的网友可能会问:那我不用嘴呼吸,全程用鼻子呼吸不就不咳嗽了吗?
只用鼻子呼吸可能确实不会咳嗽,但当你需要提速时,只用鼻子呼吸,身体的摄氧量就达不到,就会难受,坚持不下来,否则就只能一直慢跑,无法提速。
用嘴还是鼻子其实取决于身体对氧气的需求量,并没有绝对统一的标准。所以,跑步时不是绝对地不要用嘴巴呼吸,毕竟嘴巴呼吸可以增加我们的供氧量,提高我们的速度。我们要学会的是正确地用嘴巴呼吸,而不是张嘴,让冷风无情地往里面灌。
图片
2 学会腹式呼吸
我们正常呼吸的时候,使用的是胸式呼吸,主要用的肺的中部和上部呼吸,吸气的时候,腹部提起变小;呼气的时候,腹部放下变大。这种呼吸方式会增加我们的肺部和心脏负担。肺部和心脏必须工作得更勤快,才可以确保氧供应充足。
腹式呼吸简单地来说就是“鼻吸口呼”。与胸式呼吸相反,腹式呼吸时,吸气的时候腹部鼓起来,呼气的时候腹部下沉。整个过程是靠横膈肌的活动完成的,当吸气时,横膈膜收缩并向下移动,胸部的肌肉收缩以使胸腔扩大,这些动作会扩充胸腔的容量,并将空气吸入肺部,让肺扩张到最大限度,并最大限度地吸入空气,进而可以提高每一次呼吸的氧气吸入量。
与横膈膜相连的其他解剖结构 图源:《高效呼吸训练:舞蹈、瑜伽、普拉提的功能性练习》,埃里克·富兰克林
如果找不到感觉,可以把手放在腹部,吸气的时候去感受腹部和手的对抗,呼气的时候感受手随着我们的腹部一起下陷。
如果呼吸的时候出现憋气或不顺畅,可以保持平静的呼吸,放松之后再进行腹式呼吸。
学会用腹式呼吸法跑步,鼻吸口呼,寒冷的空气不会直接进入我们的口腔,可以有效避免跑完咳嗽的困扰。
3 呼吸的进阶——韵律呼吸
如果你已经学会了腹式呼吸,想在跑步提速的同时更加轻松,可以尝试韵律呼吸。
韵律呼吸建立在腹式呼吸的基础上,但在节奏上进行了创新,认为应该采用奇数的呼吸模式,即三步一吸,两步一呼,或者两步一吸,一步一呼。
跑步时,当我们的脚在开始呼气的时候落到地面,会产生最强的冲击力,此时身体的稳定性最差的。如果采用两步一吸,两步一呼,或者三步一吸,三步一呼这种偶数的呼吸模式时,呼气的时候总是落在同一只脚上,身体的冲击力完全由同一只脚承担,容易给脚部造成伤害。
而韵律呼吸提倡的奇数呼吸模式可以让我们的左右脚落地时轮流呼气,让左右脚均匀地承担身体的冲击力。
至于是采取三步一吸,两步一呼,还是两步一吸,一步一呼,取决于我们跑步的状态。
如果是长跑或对速度没有什么要求,可以采取三步一吸,两步一呼,数到3时吸气,再数到2时呼气。如果在比赛时冲刺,或者需要提速,可以采取两步一吸,一步一呼,数到2时吸气,再数到1时呼气。
感兴趣的朋友不妨尝试一下,学会了呼吸,也许800/100米就不再是噩梦了。
资料来源:科普中国、全民较真-腾讯新闻、《跑步时该如何呼吸》《高效呼吸训练:舞蹈、瑜伽、普拉提的功能性练习》
整理:党敏
治疗“绿色癌症”,智能细菌来帮忙******
◎实习记者 骆香茹
炎症性肠病虽然致死率较低,但长期以来,也面临着诊断困难和难以根治的问题,被称为“绿色癌症”。
近日,华东理工大学生物工程学院院长叶邦策教授及该院副教授周英团队在《细胞—宿主与微生物》上发表了一项研究成果。该团队开发了一株智能工程菌——i-ROBOT,可实现在体无创实时监测和记录炎症性肠病的发生与发展,并以自调控的给药模式缓解病症。
各色技术上阵诊断“绿色癌症”
炎症性肠病是胃肠道最常见的慢性炎症性疾病,包括克罗恩病和溃疡性结肠炎。腹痛、腹泻、便血等是炎症性肠病主要的症状表现。
当前炎症性肠病的诊断方法在临床上主要有肠镜、电子微胶囊肠镜等。论文通讯作者叶邦策介绍,肠镜检查的好处是直观,可以观察到人体整个肠道的情况。“但肠镜检查是一项有创检查,在操作过程中难免损伤肠道黏膜,造成少量出血,引起被检者的不适感,患者依从性差。”叶邦策补充道,“也有无痛肠镜,但这种方式有一定风险,做这种检查前需要患者进行全身麻醉,对患有心脏病和肺部疾病的人来说,风险较大。”
电子微胶囊肠镜是近年来新兴的检查方式,叶邦策介绍,与传统肠镜相比,其对患者造成的痛苦更小、适应性更强,能检查传统肠镜无法到达的回肠、空肠等。但胶囊在消化道运动的过程中,无法人为控制其运动轨迹,其在消化道等位置会随机翻转,产生视觉盲区,有可能导致错过病变部位、延误病情等情况发生,且电子微胶囊肠镜的检查费用更高,给患者带来的经济压力更大。
智能工程菌是炎症性肠病的新兴诊断方式之一。叶邦策介绍,他们会提前3天将智能工程菌通过口服灌胃的方式送入小鼠体内,等肠炎造模给药结束后通过分析粪便中存在的智能工程菌的荧光信号和基因组DNA突变情况,确定肠道炎症发生、发展程度。
“智能工程菌在诊断灵敏性、便捷性以及成本上都具有无法比拟的优势,但目前仍仅能通过分析粪便样品来评估疾病的有无或严重程度,而难以实施在体原位诊断。”叶邦策表示,“此外,智能工程菌的生物安全性还需进一步加强。”
治疗方法从抗炎药物到智能活菌机器人
为了攻克炎症性肠病,专家们想了不少办法。过去,炎症性肠病的主要治疗方法是使用抗炎药物和免疫调节药物。叶邦策介绍,随着肠道微生物研究的深入,过去十年间,调节肠道微生态、使用智能活菌成为炎症性肠病的研究热点,创新研究不断涌现。
叶邦策团队开发的i-ROBOT是使用大肠杆菌Nissle1917作为底盘细胞进行改造的。叶邦策介绍,i-ROBOT能够感知低浓度的炎症标志物,具有诊断早期肠炎的潜力。同时,i-ROBOT还能记录疾病发生与发展的信息,帮助监测胃肠道健康状态。
当然,i-ROBOT的功能远不止于此。叶邦策表示,i-ROBOT还可以在病灶部位根据疾病的严重程度释放相应浓度的药物,在实现有效治疗的同时,又能避免因过度用药而产生的副作用。
“我们认为智能工程菌是智能活菌机器人的一种。”叶邦策补充道,“智能工程菌具备优异的感知和收集周围环境信息的能力,能够与周围环境进行互动,并能在特定时间和地点采取特定的行动。”
近年来,“粪便也能治病”的冷知识刷新了不少人的认知,通过粪菌移植治疗炎症性肠病也受到越来越多的关注。粪菌移植是将健康人的肠道菌群植入患者肠道,重建肠道微生态系统,以此治疗肠道疾病。粪菌移植成为炎症性肠病治疗的一种新选择。然而,叶邦策提醒道:“尽管有很多阳性的结果支持粪菌移植的可行性,但是目前一些安全性、伦理性问题尚未得到很好地解决,粪菌移植疗法还存在争议。”
发展交叉学科或可破解炎症性肠病诊疗难题
叶邦策介绍,当前,许多研究证明了智能工程菌具有在活体内诊断和治疗疾病的应用潜力,且智能工程菌逐步朝着智能化和临床应用性的方向发展。其中,功能稳定性、临床效力和安全性是决定智能工程菌能否成功应用于临床的关键。
叶邦策表示:“合成生物学为智能工程菌感应疾病标志物的种类及传感性能提供了很好的策略,然而仅仅依靠合成生物学难以解决所有问题。”
叶邦策认为,交叉学科的发展为此提供了新的契机,例如将合成生物学与材料和化学科学相结合,能够增强智能工程菌的定植性、靶向性和可控性,进而实现炎症部位的在体原位成像检测。
此外,智能工程菌的安全性也是限制其临床应用的重要因素,为了应对智能工程菌可能导致的抗性转移、代谢物毒性等问题,研究者们仍在优化技术方案,通过不使用抗性基因作为筛选标记、选择更安全的益生菌作为智能工程菌的底盘、进行细菌毒力因子的敲除、对逃逸细菌进行有效的控制和清除等策略,有针对性地解决相关难题。
谈到智能工程菌的应用前景时,叶邦策表示,从诊断的角度来说,如果智能工程菌能够通过临床试验,运用到炎症性肠病的临床治疗中,将打破传统肠道疾病的诊断模式,部分替代侵入性的肠镜检测,能让受检者在没有任何痛苦的情况下,诊断出其是否罹患炎症性肠病。